Machine Learning mit Python und Scikit-learn und TensorFlow

Artikel 0 VON 10
Zum Vergrößern in das Bild klicken

Machine Learning mit Python und Scikit-learn und TensorFlow

ISBN: 9783958457331
Sebastian Raschka
von Sebastian Raschka und Vahid Mirjalili
2. Auflage 2018
584 Seiten
Bitte wählen Sie Ihr gewünschtes Format
Sofort lieferbar

Das umfassende Praxis-Handbuch für Data Science, Deep Learning und Predictive Analytics

  • Datenanalyse mit ausgereiften statistischen Modellen des Machine Learnings
  • Anwendung der wichtigsten Algorithmen und Python-Bibliotheken wie NumPy, SciPy, Scikit-learn, TensorFlow, Matplotlib, Pandas und Keras
  • Best Practices zur Optimierung Ihrer Machine-Learning-Algorithmen

Machine Learning und Predictive Analytics verändern die Arbeitsweise von Unternehmen grundlegend. Die Fähigkeit, in komplexen Daten Trends und Muster zu erkennen, ist heutzutage für den langfristigen geschäftlichen Erfolg ausschlaggebend und entwickelt sich zu einer der entscheidenden Wachstumsstrategien.

Die zweite Auflage dieses Buchs berücksichtigt die jüngsten Entwicklungen und Technologien, die für Machine Learning, Neuronale Netze und Deep Learning wichtig sind. Dies betrifft insbesondere die neuesten Open-Source-Bibliotheken wie Scikit-learn, Keras und TensorFlow.

Python zählt zu den führenden Programmiersprachen in den Bereichen Machine Learning, Data Science und Deep Learning und ist besonders gut dazu geeignet, grundlegende Erkenntnisse aus Ihren Daten zu gewinnen sowie ausgefeilte Algorithmen und statistische Modelle auszuarbeiten, die neue Einsichten liefern und wichtige Fragen beantworten.

Die Autoren erläutern umfassend den Einsatz von Machine-Learning- und Deep-Learning-Algorithmen und wenden diese anhand zahlreicher Beispiele praktisch an. Dafür behandeln sie in diesem Buch ein breites Spektrum leistungsfähiger Python-Bibliotheken wie Scikit-learn, Keras und TensorFlow. Sie lernen detailliert, wie Sie Python für maschinelle Lernverfahren einsetzen und dabei eine Vielzahl von statistischen Modellen verwenden.



Aus dem Inhalt:
  • Trainieren von Lernalgorithmen für die Klassifizierung
  • Regressionsanalysen zum Prognostizieren von Ergebnissen
  • Clusteranalyse zum Auffinden verborgener Muster und Strukturen in Ihren Daten
  • Deep-Learning-Verfahren zur Bilderkennung
  • Optimale Organisation Ihrer Daten durch effektive Verfahren zur Vorverarbeitung
  • Datenkomprimierung durch Dimensionsreduktion
  • Training Neuronaler Netze mit TensorFlow
  • Kombination verschiedener Modelle für das Ensemble Learning
  • Einbettung eines Machine-Learning-Modells in eine Webanwendung
  • Stimmungsanalyse in Social Networks
  • Modellierung sequenzieller Daten durch rekurrente Neuronale Netze


Über die Autoren:
Sebastian Raschka verfügt über jahrelange Erfahrung in der Python-Programmierung und leitete mehrere Seminare über praktische Data-Science-Anwendungen, Machine Learning und Deep Learning u.a. auf der SciPy-Konferenz.
Vahid Mirjalili erforscht Anwendungen des Machine Learnings in verschiedenen Computer-Vision-Projekten (»maschinelles Sehen«) am Fachbereich für Informatik und Ingenieurswesen an der Michigan State University.


Pressestimmen zur Vorauflage:

»Sehr hilfreich sind die beispielhafte Entwicklung eines Systems für "machine learning" und die Hinweise zur Einbettung in eine Webanwendung. Viele Beispiele.« (ekz Bibliotheksservice, 03/2017)